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• When addressing problems using quantum algorithms there is usually a main question…

• Is it better than classical?

– The definition of Quantum Speedup depends on how the question is asked

• Provable Quantum Speedup (e.g., Grover algorithm)

• Strong Quantum Speedup (e.g., Shor’s algorithm)

• Observed Quantum Speedup (potential and limited)

• Optimization problems pose a challenge to speedup analysis

– Problems can be in NP: Exponential speedups are believed as unreachable

• This does not discourage us from developing methods given applications

– Speedup should be observed at application scale for the problem of interest, and heuristically observed → 

We need Benchmarks of our solution methods

Speedup as a function 

of problem size

In the real world what you care about is «speedup 

at application scale» for your problem of interest.

Benchmarking: our tool to observe optimization speedups



Parameterized Stochastic Solvers for Optimization Problems

• Solver

– End-to-end solution method: hardware and software running 

algorithm

• Our definition of Stochastic

– Solvers are understood as samplers of random variables 𝑋 of 

distributions characterized by a CFD and a threshold 𝐹𝑋(𝑋 ≤ 𝑥)

– Solvers are modifiers of these distributions with resource such that 

distribution shifts towards optimal solution as resource increases

• Definition of parameterized

– Several parameters in the algorithms with strong effects in 

performance

– In some cases, unknown dependance of performance w.r.t parameters



Optimization Parameterized Stochastic Solvers

• Classical algorithms

– Simulated Annealing

– Parallel Tempering

– Genetic Algorithms

• Quantum Annealing (QA)

• Coherent Ising Machines

• Quantum Alternating Optimization Ansatz 

(QAOA)

• Unconventional processors for Ising models

journals.aps.org/prx/abstrac

t/10.1103/PhysRevX.5.03104
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Coherent Ising Machines

Chaotic-Amplitude-Control (CAC)

ሶ𝑥𝑖 = 𝑝 − 1 𝑥𝑖 − 𝑥𝑖
3 + 𝑒𝑖𝜖 σ𝑗 𝐽𝑖𝑗𝑥𝑗,

ሶ𝑒𝑖 = −𝛽 𝑥𝑖
2 − 𝑎 𝑒𝑖,

See for example 

arxiv.org/abs/2108.07369

Input Output
Parameters 

𝛼

𝛽1, 𝛾1, 𝛽2, 𝛾2,
… , 𝛽𝑝, 𝛾𝑝, …

𝛽, 𝑝, 𝜖, 𝑎, …

𝐽𝑓 , 𝑇𝑝𝑎𝑢𝑠𝑒 , …

…

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.031040
https://arxiv.org/abs/2108.07369


Quantum and Quantum-Inspired Ising 
Solvers Examples

1. Quantum Annealing: D-Wave Systems

2. Coherent Ising Machines and 

Bifurcation Machines
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The Quantum Adiabatic Algorithm for Ising Machines

(1) Map objective function into energy of a quantum Ising system

𝑯𝒑 =

𝒊𝒋

𝑱𝒊𝒋𝒁𝒊⨂𝒁𝒋 +

𝒊

𝒉𝒊𝒁𝒊

(2) Start from easy problem to solve with known solution

(3) Do any Schrödinger evolution (no measurement! No noise!)

that changes the energy states «sufficiently slow».

How slow? It depends on the problem, on HD and on the 

Annealing Schedule 

No way to predict efficiently. Try!

𝐻|𝑠1𝑠2…𝑠𝑁⟩ = 𝐸𝑁| 𝑠1𝑠2…𝑠𝑁 ⟩

exp(𝒊𝑯) |𝒔𝟏𝒔𝟐…𝒔𝑵⟩ = 𝒆𝒊𝑬𝑵 |𝒔𝟏𝒔𝟐…𝒔𝑵⟩

(transverse field)
𝑅𝑥(𝜋/2)|0⟩ = |1⟩
𝑅𝑥(𝜋/2)|1⟩ = |0⟩

If this field is always on and constant the minimum 

energy state is the all-superposed state

H = A(t) HD + B(t) HP

𝑯𝑫 = 𝜞

𝒊

𝑿𝒊

| ⟩𝚿 𝑵𝒒𝒖𝒃𝒊𝒕𝒔 =
𝟏

𝟐𝑵


𝒏=𝟏

𝟐𝑵

| ⟩𝒔𝒐𝒍𝒖𝒕𝒊𝒐𝒏(𝒏)
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Quantum annealing à la D-Wave

and have maximum value and 

fluctuating intrinsic control errors:
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Annealing Schedule Parameters

Pause 

time

Time for annealing

(if AQC controls performance)

reversal 

time
First 

pause 

time

These are all parameters that influence performance. Only for elegant problems they can be derived ab-initio. 

In the real world you have some physics guidance for 

best guess then you use a heuristics to find them

Sp



Topological Embedding

(nH hardware qubits) (nP logical bits)

Parameter Setting
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Minor Embedding

Assign “colors” to connected sets of qubits

Energy Landscape Before 

embedding

Energy Landscape After 

embedding

𝜀 𝑖 : 1, … , 𝑛𝐿 → 2 1,…,𝑛𝑃



𝑗∈𝜀(𝑖)

ℎ𝑗
′ = ℎ𝑖



𝑗1∈𝜀 𝑖1



𝑗2∈𝜀 𝑖2

𝐽𝑗1𝑗2
′ = 𝐽𝑖1𝑖2 𝐽𝑗1𝑗2

′ < ℎ𝑖 −

𝑘=1

𝑛

|𝐽𝑖𝑗|



Systematic Rule for Embedding Quadratic overhead
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Minor Embedding of a fully connected graph



Ferromagnetic Coupling 

𝒇(𝑺𝟏, 𝑺𝟐) = −𝑱𝑭𝒔𝟏 𝒔𝟐
𝒇(𝑿𝟏, 𝑿𝟐) = −𝟒𝑱𝑭(−𝑿𝟏− 𝑿𝟐 + 𝑿𝟏𝑿𝟐 )
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Unembedding

What is the correct 𝐽𝐹 ?

Not too large, not too small. Trial and error. 

(See Venturelli et al. 

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.031040)

1 1 1 1

1 1 1 1 1 1

Energy=ε+εkink

Energy=ε

-1 -1

Majority Voting

Sp … 𝐽𝐹

https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.031040


From our main example

And embed it into a Chimera graph (subgraph of the Chip)

Notice that we need to “duplicate” certain variables into

several qubits

This step is non-trivial:

Either use heuristic methods or solve highly constrained 

problem
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Minor Embedding - Example
https://colab.research.google.com/github/bernalde/QuIPML22/blob/main/notebooks/Notebook%204%20-%20DWave.ipynb

https://colab.research.google.com/github/bernalde/QuIPML22/blob/main/notebooks/Notebook 4 - DWave.ipynb


Coherent Ising Machines



NEWS: 100,000 Spins



Coherent Ising Machines: Stochastic 
Differential Equations

Describing the system with zero 

quantum noise, and neglecting the 

out-of-phase component of the signal 

Chaotic-Amplitude-Control (CAC)

orAmplitude Heterogeinity Correction

or Error-variable Feedback

𝑠𝑖 = 𝑠𝑖𝑔𝑛(𝑥𝑖) is 

the bit variable

ሶ𝑥𝑖 = 𝑝 − 1 𝑥𝑖 − 𝑥𝑖
3 + 𝜖

𝑗

𝐽𝑖𝑗𝑥𝑗 ሶ𝑥𝑖 = 𝑝 − 1 𝑥𝑖 − 𝑥𝑖
3 + 𝑒𝑖𝜖 σ𝑗 𝐽𝑖𝑗𝑥𝑗,

ሶ𝑒𝑖 = −𝛽 𝑥𝑖
2 − 𝑎 𝑒𝑖,

( ሶ𝑥𝑖 = 𝜕𝑉/𝜕𝑥𝑗)

𝑉 ≔ 

𝑖

𝑝 − 1 𝑥𝑖
2

2
+
𝑥𝑖
4

4
− 𝜖

𝑖𝑗

𝐽𝑖𝑗𝑥𝑖𝑥𝑗



Various architectures

https://arxiv.org/abs/2105.03528



Coherent Ising Machines: Stochastic Differential 
Equations

Chaotic-Amplitude-Control (CAC)

orAmplitude Heterogeinity Correction

or Error-variable Feedback

https://arxiv.org/pdf/2108.07369.pdf

See for instance:

ሶ𝑥𝑖 = 𝑝 − 1 𝑥𝑖 − 𝑥𝑖
3 + 𝑒𝑖𝜖 σ𝑗 𝐽𝑖𝑗𝑥𝑗,

ሶ𝑒𝑖 = −𝛽 𝑥𝑖
2 − 𝑎 𝑒𝑖,



Oscillation Based Machines, Bifurcation 
Machines, MemComputers etc.

The Kuramoto Model describes 

synchronization of oscillators

The Fujitsu Digital Annealer

The Toshiba Simulated Bifurcation 

Machine, Memcomputing

https://ieeexplore.ieee.org/document/8892209



Time-to-Solution and variants

If the parameters are 

suboptimal you can be 

fooled into thinking the 

complexity decreases with 

problem size!

▪ Fix parameters, run many times (num𝑡𝑟𝑖𝑎𝑙𝑠) – estimate cost of 

being above certain quality measure PDF 𝑓 𝑋 ≤ 𝑥 = 𝑓(𝑥)

▪ Define a success test: ok if 𝑋 = 𝑐𝑜𝑠𝑡 < 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑥

▪ Estimation of success probability

• 𝐹𝑋 𝑥 = 𝐶𝐷𝐹 𝑥𝑂𝐾 = 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠 =
𝑛𝑢𝑚𝑂𝐾

𝑛𝑢𝑚𝑡𝑟𝑖𝑎𝑙𝑠
= 𝑥<𝑥𝑂𝐾

𝑑𝑥𝑓 𝑥

• Probability of succeeding at least once in 𝑅 attempts is given 

by new random variable 𝑌𝑅 = min{𝑥 𝑖ۤۥ } with CDF 

• 𝑓 𝑌𝑅 ≤ 𝑥 = 𝐹𝑌𝑅 𝑥 = 𝑃(𝑅) = 1 − 1 − 𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠
𝑅

▪ Invert to find 𝑅 required to achieve success with at least 

probability 𝑠 (𝑢𝑠𝑢𝑎𝑙𝑙𝑦 0.99) scaled by a resource factor (e.g., 

time per shot/read)

• 𝑇𝑇𝑆 = 𝑡
log 1−𝑠

log 1−𝑃𝑠𝑢𝑐𝑐𝑒𝑠𝑠

Academic Benchmarking Standard: 

median𝑇𝑇𝑆(𝑁)



Example 1: CIM 
vs D-Wave (2020)

https://www.science.org/doi/

10.1126/sciadv.aau0823



Example 2: Sim-CIM vs Adiabatic QAOA 

https://arxiv.org/abs/2105.03528



Example 3: D-Wave vs Digital Annealer and 
Parallel Tempering

https://arxiv.org/abs/2103.08464



Example 3: Ising Solvers Review

Mohseni, Naeimeh, Peter L. McMahon, and Tim Byrnes. "Ising machines as hardware solvers of combinatorial optimization problems." Nature Reviews Physics 4.6 (2022): 363-379. 

• “Solving the Model”
• Physicists: identifying the value of thermodynamics expectation values (find the 

thermal distribution of energies)

• Optimizers: find the actual bitstring/variable values that minimizes the objective 
function (find the ground state)

– BIG CAVEAT! Do we return the optimal solution, or a good one suffices?

• How to solve the Ising model? With an Ising solver!
• What is an Ising solver? An end-to-end solution method including 

software/algorithms and hardware/machines

– Classical Thermal Annealing

– Other classical algorithms

• Quantum-inspired classical algorithms

– Dynamic System solvers

• Oscilator-based computing, Coherent Ising Machines

– Quantum Approaches

• Quantum Annealing, Hybrid Quantum-Classical Algorithms



Example 3: Ising Solvers Review

Mohseni, Naeimeh, Peter L. McMahon, and Tim Byrnes. "Ising machines as hardware solvers of combinatorial optimization problems." Nature Reviews Physics 4.6 (2022): 363-379. 



Quantum Volume and variants



Quantum Volume and variants

https://quantum-journal.org/papers/q-2020-11-15-362/

https://arxiv.org/abs/2110.03137

Fidelity of two pure quantum 

states is a distance metric that 

could be defined as the 

overlap/transition probability:

𝐹(𝜓, 𝜙) = ∣ ⟨𝜓 ∣ 𝜙⟩ ∣ 2

Can be generalized for noisy 

quantum states.

How large and how long are the programs that 

a quantum processor can run reliably today?

https://quantum-journal.org/papers/q-2020-11-15-362/
https://arxiv.org/abs/2110.03137


Performance Ratio as a function of resource

Inspired in approximation ratios, considers that we are only interested in “best” samples/reads

• The probability that 𝑅 random variables are all less than 𝑥 is 𝑅𝐹𝐸(𝑥)

• The PDF for the maximum of 𝑅 iid runs is 

PDF =
𝑑𝐹

𝑑𝐸
= 𝑅 𝐹𝐸 𝑥 𝑅−1 𝑃𝐸 𝑥 𝐸(𝑥)

• For a discrete distribution: 

𝔼 𝑌𝑁 = 

𝑘=1

𝐿



𝑟=𝑘

𝐿

𝑝 𝑥𝑟

𝑁

− 

𝑟=𝑘+1

𝐿

𝑝 𝑥𝑟

𝑁

𝑥𝑘

𝑁 total number of runs, 𝑟 rank index of solution within 𝐿 different solutions, 𝑝 𝑥𝑟 probability of obtaining 𝑟𝑡ℎ solution 
and 𝑥𝑘 being the resource cost of each sample/read

• Can be obtained by bootstrapping!

• Generate 𝑁>>1 runs. Select randomly 𝑅<<𝑁. Compute the max of 𝑅. Repeat and average. 

• Using our “rigorous notation”

𝑓𝑌𝑅 𝑋𝑘 = 𝐹𝑌𝑅 𝑋𝑘 − 𝐹𝑌𝑅 𝑋𝑘−1 = 1 − 𝐹𝑋 𝑋𝑘−1
𝑅
− 1 − 𝐹𝑋 𝑋𝑘

𝑅



How to evaluate the parameter setting

Resource
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Pre/post processing

overhead

Obtain the profile across the benchmark 

set for a random instance of the set

• We propose using experimental data to respond to 
questions regarding new instances

• Addressing main question of “speedup at application 
scale” for your problem of interest.

– Expectation of metric quality at a fixed resource 
and confidence

• With X% confidence, will we find solution with Y quality 
after using R resource?

• Bonus:
– Explainable, Simple, Automatic!

• In our notation

• 𝑋𝐸 𝑅, 𝑐 = 𝐹𝑋
−1 1 − 1 − 𝑐

1

𝑅

“Classic car Windows Sticker" licensed under CC0 1.0

Windows Sticker

“Slaps Roof of Car" licensed under CC0 1.0

https://pxhere.com/en/photo/150553
https://creativecommons.org/publicdomain/zero/1.0/
https://knowyourmeme.com/memes/slaps-roof-of-car
https://creativecommons.org/publicdomain/zero/1.0/


Let’s go to Colab

https://colab.research.google.com/github/bernalde/QuIPML22/blob/

main/notebooks/Notebook%205%20-%20Benchmarking.ipynb



Let’s go to the AWS Braket 

https://console.aws.amazon.com/braket Quantum 

Annealing tutorials from Quiz III 

quantum_annealing/Dwave_Anatomy.ipynb

(also found in GitHub) but if you want to execute it 

open it in AWS.

• Great background information on

– Quantum Annealing

– Embedding

– Ising Model / MAXCUT / QUBO
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Check the AWS Exercises

https://console.aws.amazon.com/braket
https://github.com/aws/amazon-braket-examples/blob/main/examples/quantum_annealing/Dwave_Anatomy.ipynb


In AWS Braket https://console.aws.amazon.com/braket

there are other interesting Quantum Annealing tutorials

quantum_annealing/*

(also found in GitHub) but if you want to execute it 

open it in AWS.

• Classical combinatorial problems: MAXCUT, Graph 

partitioning, Min vertex cover, Traveling Salesman 

Person

• Other cases: Factoring, Structural Imbalance 

Check (and run) them all
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Other exercises on DWave

https://console.aws.amazon.com/braket
https://github.com/aws/amazon-braket-examples/blob/main/examples/quantum_annealing

