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Benchmarking: our tool to observe optimization speedups

» When addressing problems using quantum algorithms there is usually a main question...

° Is it better than classical? o

— The definition of Quantum Speedup depends on how the question is asked
» Provable Quantum Speedup (e.g., Grover algorithm)
 Strong Quantum Speedup (e.g., Shor’s algorithm) C(N) Speedup as a function
. .. S(Nr) — of problem size
« Observed Quantum Speedup (potential and limited) (N)

« Optimization problems pose a challenge to speedup analysis

— Problems can be in NP: Exponential speedups are believed as unreachable
« This does not discourage us from developing methods given applications

— Speedup should be observed at application scale for the problem of interest, and heuristically observed —
We need Benchmarks of our solution methods

beﬂning and detecting quantum speedup

O

In the real world what you care about is «speedup
at application scale» for your problem of interest.
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Parameterized Stochastic Solvers for Optimization Problems

« Solver
— End-to-end solution method: hardware and software running
algorithm R=10  R=100 R=1000 R=10000
 QOur definition of Stochastic

— Solvers are understood as samplers of random variables X of
distributions characterized by a CFD and a threshold Fy (X < x)

— Solvers are modifiers of these distributions with resource such that

distribution shifts towards optimal solution as resource increases | F |
L . __
° Deflnltlon Of parameterlzed USSR IO . N NO
— Several parameters |n the algorlthms Wlth Strong effects |n Pb_blml """ d oo ———
performance robability (Normalized)

— In some cases, unknown dependance of performance w.r.t parameters
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Optimization Parameterized Stochastic Solvers -
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Classical algorithms
o SImUIated Anneallng journals.aps.org/prx/abstrac
] £/10.1103/PhysRevX.5.03104
— Parallel Tempering » :
G t Al th Coherent Ising Machines
N enetic gorl ms Chaotic-Amplitude-Control (CAC)
Quantum Annealing (QA)
Coherent Ising Machines

Quantum Alternating Optimization Ansatz
(QAOA)

R —

0.0

3 2
Ferromagnetic coupling within logical qubits 1.

Jéi = (p — 1)Xi — xi3 + eiEZj]inj,

é = —p(x} —a)e;,

See for example

L L - . — Xk
. Unconventional processors for Ising models [ttt - : < S 5 . S
Il S Bl
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https://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.031040
https://arxiv.org/abs/2108.07369
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Quantum and Quantum-Inspired Ising
Solvers Examples

1. Quantum Annealing: D-Wave Systems
2. Coherent Ising Machines and
Bifurcation Machines
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The Quantum Adiabatic Algorithm for Ising Machines

(1) Map objective function into energy of a quantum Ising system

Hp = Z]UZ,®Z] +Zhlll
ij i

(2) Start from easy problem to solve with known solution

Hp = eri (transverse field)
i

1 2
P its = —z solution(n))
| Nqubits \/ﬁ n=1| ( )

(3) Do any Schrodinger evolution (no measurement! No noise!)
that changes the energy states «sufficiently slows.

How slow? It depends on the problem, on Hy and on the
Annealing Schedule
No way to predict efficiently. Try!

O EREEERE <y TEPPER

H|s;s,..5y) = EN|S§2 Sy )
exp(iH) |§.8, ...Sy) = eV |s;s, ...sy)

[ S L, (1 o0
“\10/) \i o) T \o =1
R, (m/2)[0) = |1)

R, (/2)|1) = |0)

If this field is always on and constant the minimum
energy state is the all-superposed state

= A Hp + B(t) HP\

40

30§

20 F ALS

Schedule (GHz)

0 \ : n
\ 0.0 0.2 0.4 ; 0.6 0.8 L0 /
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Quantum annealing a la D-Wave

Users on PC Interface

i i G Jij and h; have maximum value and
r_J

S— fluctuating intrinsic control errors:

hochial Jij + &J
h; + oh

A
Pulse Tube 0
Dilution Refrigerator g " f Bis)
Shielded Enclosure Control Subsystems = ) &AM
and Servers E]
-
I_[__| F U:I L)) (L
A 128-qubit chip composed of a 4 x 4 array of eight-qubit unit cells.
U—_l “—_| F [i:l y S

LTV 2 4 LX) e Kl
]

S

Y T

-

pEp——

4

& =~ @& in

.(() EEleNCECIEKl &E char Iqta' | ; T E P P E R Universities Space Research Association



Carnegie Mellon University

Annealing Schedule Parameters

a) Forward Annealing

—Als)
— B(s)
---E=kgT

—— =
Sumenling tinery reverse annealing time t pause time p annealing time t
Time for annealing First r_eversal
(if AQC controls performance) pause time
time
4 )

These are all parameters that influence performance. Only for elegant problems they can be derived ab-initio.

In the real world you have some physics guidance for
best guess then you use a heuristics to find them
L 4
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Minor Embedding

Topological Embedding

(nyg hardware qubits)

l\\
VAR,

<
ﬂ"
-y

e(i): {1,..,n } - 2{1,...np}

o

Assign “colors” to connected sets of qubits

i\ S
s
P

Energy Landscape Before Energy Landscape After
embedding embedding

n
Z i =iy Jig, < Ihil = Z Jij
k=1

j1€e(iq) jo€e(iz)
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Minor Embedding of a fully connected graph

Systematic Rule for Embedding
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Unembedding e,

Ferromagnetic Coupling .

f(8,8;) = —JFs;s,
f(X, X)) = —4JF(—X,— X, + XX, )

~ -
~ -
-~ I

What is the correct J .
Majority Voting "ol TN

0 5 1015 20 25 30

0.6
| problem size N

S . Logica

o4l |

0.2}

0.0

6
Ferromagnetic coupling within logical qubits J,

Not too large, not too small. Trial and error.
(See Venturelli et al.
https://journals.aps.ora/prx/abstract/10.1103/PhysRevX.5.031040)
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Minor Embedding - Example

https://colab.research.google.com/github/bernalde/QuIPML22/blob/main/notebooks/Noteb00k%6204%20-%20DWave.ipynb
From our main example

—46. 0. 0. 48. 48. 48. 0. 48. 48, 48, 48,
0. —44. 0. 48. 0. 48, 48, 0. 48, 48. 48
0. 0. —44. 0. 48. 0. 48, 48. 48. 48, 48,
48, 48. 0. —92. 48. 96, 48. 48. 96. 96, 96,
48. 0. 48, 48, —92. 48. 48. 96. 96, 96. 96,
48, 48. 0. 96, 48, —92, 48. 48. 96. 96, 96,
0. 48. 48. 48. 48. 48. —91. 48. 96. 96. 96
48. 0. 48. 48. 96. 48. 48. —92. 96. 96. 96.
48. 48. 48. 96. 96. 96. 96. 96.—139. 144, 144,
48. 48. 48. 96. 96. 26. 96. 96. 144, —138. 144,
L 48. 48. 48. 96. 96. 96. 96. 96. 144, 144.—139.

And embed it into a Chimera graph (subgraph of the Chip)

Notice that we need to “duplicate” certain variables into &
several qubits

ThlS Step iS non'triVial: Best embedding in 1000 heuristicruns Full graph embedding

Either use heuristic methods or solve highly constrained
problem
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Coherent Ising Machines

Pum

pu|s§ SHG Signal pulses
pulse # #1
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NEWS: 100,000 Spins

x107
—— SA (0.698 s)
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COMPUTER SCIENCE

100,000-spin coherent Ising machine

Toshimori Honjo'#, Tomohiro Sonobe?, Kensuke Inaba', Takahiro Inagaki', Takuya Ikuta',
Yasuhiro Yamada', Takushi Kazama®, Koji Enbutsu®, Takeshi Umeki?, Ryoichi Kasahara®,
Ken-ichi Kawarabayashi?, Hiroki Takesue'*
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Coherent Ising Machines: Stochastic

Differential Equations

Describing the system with zero
quantum noise, and neglecting the
out-of-phase component of the signal

J

(p — Dx? x}
V= Z( > : +Il _Ezjijxixf
i ij

s. = sign(x;)is

l

the bit variable

ectrical & Computer
 ENGINEERING

<y TEPPER

Chaotic-Amplitude-Control (CAC)
or Amplitude Heterogeinity Correction
or Error-variable Feedback

X =@ —Dx; —x7 +ee X ]ijx;,
éi — _ﬁ(xlz _ a)eia
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Various architectures

o

(@) T T T T T T T T e 5 (b) Closed-loop CIM (c) Open-loop CIM
1@ Nonlinear Crystal T o

du
—' =[-A+ ) +p- g?wm?lm

Fluctuation

Optical homodyne
measurement

{3}

Feedback
Injection

(Self-diagnosis feedback

de {a;}
i pa-a)e

FIG. 1: (a) Schematic diagram of the measurement-feedback coupling
CIMs with and without the self-diagnosis and dynamic feedback :f;
control (closed-loop and open-loop CIMs) indicated using dashed blue

and orange lines, respectively. (b) and (c) Dynamical behaviour of the 0 (b4)_ 0 (c4)
closed-loop and open-loop CIMs, respectively. (bl) and (c1) Inferred 0 5 10 15 20 0 5 0 15 20
Ising energy (the dashed horizontal lines are the lowest three Ising Normialized Computation TIet=yT e N Comp A T T mEC=ger
eigen-energies). (b2) and (c2) Mean-field amplitude p;(t). (b3) and

c3) Feedback-field amplitude e;(t). (b4) Target squared amplitude .
g(t;. (c4) Pump rate plzt). (1) (b e P httpS//&leVOfg/abS/z 1 0503 528

=
a(t)
=
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Coherent Ising Machines

Equations

In our simulation, the z; variables are restricted to the range [—3+/a, 31/a] at each time step. The pa-

rameters p and a are modulated linearly from their starting to ending values during the T, time steps
and are kept at the final value for an additional 7, time steps. The initial value x; is set to a random

value chosen from a zero-mean Gaussian distribution with a standard deviation of 10* and e; = 1. Fur-
thermore, 3200 trajectories are computed per instance to evaluate T'TS. The actual parameters used for

simulation are listed below:

N step 3200
AT 0.125
T, 2880
T, 320

p -1.0 — 1.0
« 1.0 = 2.5
8 0.8

: Stochastic Differential

Chaotic-Amplitude-Control (CAC)
or Amplitude Heterogeinity Correction
or Error-variable Feedback

X =@ —Dx; —x7 +ee X ijx;,

é; = —B(xf — a)e;,

See for instance:
https://arxiv.org/pdf/2108.07369.pdf

ectrical & Computer
 ENGINEERING
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Oscillation Based Machines, Bifurcation

Machines, MemComputers etc.

The Fujitsu Digital Annealer
The Kuramoto Model describes
synchronization of oscillators
The Toshiba Simulated Bifurcation
Machine, Memcomputing .
FUJITSV

\\ https://ieeexplore.ieee.org/document/8892209

"'SB step count

igital
%:r?;\ea\'\\'\g
Unit

Ising Energy o

(b) ~ | 255 oscillators out of 4000 oscillators
A

Positions of oscillators, x,

”SB steb count..
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= Fix parameters, run many times (numy,;,;5) — estimate cost of

being above certain quality measure PDF f(X < x) = f(x)

= Define a success test: ok if X = cost < target = x

Q©

= Estimation of success probability

Fy(x) = CDF (xok) = Psyccess = 0K fx<x0K dxf (x)

NUMtrials

Probability of succeeding at least once in R attempts is given
by new random variable Y = min{xp;} with CDF

f(Yr <x) = FYR(X) =P(R) = 1— (1 — Pyyccess)®

Invert to find R required to achieve success with at least
probability s (usually 0.99) scaled by a resource factor (e.g.,
time per shot/read)

log(1-s)

TTS =t

Electrical & Computer

ENGINEERING

log(1—Psuccess)

<y TEPPER

spreed I S0OA SA, def 1 k i 1i:

Carnegie Mellon University

Time-to-Solution and variants

Academic Benchmarking Standard:
median{TTS)(N)

REPORT

Defining and detecting quantum speedup

Troels F. Rénnow!, Zhihui Wang®?, Joshua Job®*, Sergio Boixa®%, Sergei V. Isakov’, David Wecker®, John M. Martinis®, Dan...
+ See all authors and affiliations

Science 25 Jul 2014
Vol 345, I1ssue 6195, pp. 420-424
DOI: 10.1126/science 1252319

F-I Suboptimal

- Optimal

—

o If the parameters are
________ " suboptimal you can be
fooled into thinking the
complexity decreases with
problem size!

l@ Universities Space Research Association

FIG. 2. Pitfalls when detecting speedup. Shown is the
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Example 1: CIM
vs D-Wave (2020) CIM (simulated) ~ D-Wave 20000

10° 4
5 02 ﬁg 107
https://www.science.org/do1/ i | gy
. & 1 210-2
10.1126/sciadv.aau0823 - :
3 105 £1071
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Annealing time Tann (US)

m
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o e
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Example 2: Sim-CIM vs Adiabatic QAOA

(a) TTS Scalings for 21-Weight Graphs (b) TTS Scalings as Functions of v/n for the SK Model

0
—e— Closed-loop MFB-CIM: y;AT,=0.1 10 —a— 20-layer DAQC: Median
10! —o— 20-layer DAQC 20-layer DAQC: A'B'"
—e— DH-QMF —e— Closed-loop MFB-CIM: Median
101 —— Closed-loop MFB-CIM: AB™"
—e— DH-QMF: Median
—_ —_ DH-QMF: AB"n?log log n
2 10 7
g10™ 2102
5 S
E E
© o}
8 3 »10-3
810 8
(0] )
€ £
— = 10-4
1073
107>
5 10 15 20 25 30 v10 v 100 v300 v500
Problem size n Square root of problem size vn

FIG. 14: Comparison of the time-to-solution (TTS) scalings for the MFB-CIM, DAQC, and DH-QMF in solving MAXCUT. (a) Wall-clock time of
a closed-loop CIM with a low-finesse cavity (v7sAT; = 0.1), DAQC with an optimum number of layers (p = 20), and DH-QMF with an a priori
known number of optimum iterations versus problem size n. (b) TTS of the closed-loop CIM on the fully connected SK model for problem sizes
from n = 100 to n = 800, in steps of 100. For each problem size, the minimum TTS with respect to the optimization over tyax is plotted. In
comparison, the SK model TTSs are shown for 20-layer DAQC and DH-QMF for problem sizes ranging from n = 10 to n = 20. The straight,
lighter-blue line (a linear regression) for the CIM demonstrates a scaling according to ABVY™. The lighter-orange and lighter-green best-fit curves
for DAQC and DH-QMF are extrapolated to larger problem instances, illustrating a scaling that is exponential in n rather than in /n. In both

figures, the shaded regions show the IQRs. .
https://arxiv.org/abs/2105.03528
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Example 3: D-Wave vs Digital Annealer and
Parallel Tempering

250

350

¥ SATonGPU n

’_l
)
.

—
S
]

102 ¢

’—l
<
B
Bl

optimal median TTS (sec)
>

® DAU V SATonGPU
SBM O DWA

¢ PT 0O DWAsub

A MEM

ectrical & Computer
 ENGINEERING

100

200 300 400

problem size n

<y TEPPER

https://arxiv.org/abs/2103.08464

FIG. 2. Median optTTS for different solvers for the quadratic 3R3X instances at different problem sizes n. The error bars
correspond to 20 confidence intervals calculated using a Bayesian-bootstrap. Each solver is represented with a different marker
and color, as denoted by the legend. DAU is Fujitsu's Digital Annealer Unit, run in parallel mode on 25 April 2020. SBM is
Toshiba’s Simulated Bifurcation Machine, accessed via Amazon Web Services on 20 August 2020. PT is our implementation of
parallel tempering. MEM is the Virtual MemComputing Machine. SATonGPU is the data from Fig. 5 of Bernaschi et al. [37],
after converting their native three-body 3R3X results in n/2 variables to n two-body variables by simplying doubling their
reported n values. Note that the SATonGPU results are plotted on a separate, shifted horizontal axis (top, blue), as this solver
reached significantly larger problem sizes than the other solvers; its optTTS is smaller by at least two orders of magnitude than
the rest. DWA is the D-Wave Advantagel.l device accessed via LEAP on 31 October 2020. DWAsub are suboptimal points in
which the optimal runtime is below 1us, the lowest runtime possible on the Advantagel.l device. The lines correspond to the
exponential fits [Eq. (3)] of the data, with the coefficients given in Table 1. The DWAsub points were not used in computing
the DWA scaling exponent reported in Table 11,

Universities Space Research Association
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Example 3: Ising Solvers Review
e “Solving the Model” A Energy ‘

* Physicists: identifying the value of thermodynamics expectation values (find the
thermal distribution of energies)

» Optimizers: find the actual bitstring/variable values that minimizes the objective
function (find the ground state)

— BIG CAVEAT! Do we return the optimal solution, or a good one suffices? N \ : "
. : ) t i
e How to solve the Ising model? With an Ising solver! kil Y

a Minimum gain

* What s an Ising solver? An end-to-end solution method including
software/algorithms and hardware/machines
— Classical Thermal Annealing Aftractors
—  Other classical algorithms
» Quantum-inspired classical algorithms
— Dynamic System solvers
« Oscilator-based computing, Coherent Ising Machines

— Quantum Approaches e
* Quantum Annealing, Hybrid Quantum-Classical Algorithms

i

Boltzmann Machine Photonic annealer Coherentyl‘;ir{g machine

Mohseni, Naeimeh, Peter L. McMahon, and Tim Byrnes. "Ising machines as hardware solvers of combinatorial optimization problems." Nature Reviews Physics 4.6 (2022): 363-379.
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Example 3: Isinag S'gglvers Review
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Mohseni, Naeimeh, Peter L. McMahon, and Tim Byrnes. "Ising machines as hardware solvers of combinatorial optimization problems." Nature Reviews Physics 4.6 (2022): 363-379.
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Quantum Volume and variants

A Quantum
Computer's
power depends
on more than just
adding qubits

Quantum Volume

Volume of cube proportional
to useful quantum computing
that can be done

If we want to use quantum 28
computers to solve real
problems, they will need to 10,000
explore a large space of 40,000
quantum states. The number
of qubits is important, but so
is the error rate. In practical
devices, the effective error
rate depends on the accuracy W g
: Vo' a* is)
of each operation, but also aﬂfuﬂ'ﬂ,e (Y! (* ¥
on how many operations it 0V oo oo >
takes to solve a particular :Zd v’ g
problem as well as how the <
processor performs these o <
operations. Here we introduce <
a quantity called Quantum s
Volume which accounts for all ""6«0
oooo of these things. Think of it s
OooOn as a representation of the
oOooono problem space these Soiwce:
ooooao machines can explore. IBM Research
oooood
ooooonod [0 Experiment Passed
ooogoood [0 Experiment Failed
Ooooooood Model Passed
0000000000 B Quantum Volume Experiment Passed
ooooogooooood Passed (Implied by Quantum Volume)
D0000Qooooooooo
OO00000DoO00o0DoooOooooad
0000000 oooooooooooooooon
OO0000000 00000000000 00000 00000000000 OoOon
O00OO00000OO0000 0000000000 O 000D O000oDoooOooon
O0D0O0OO0000OO0O000D00000000000000000000000000O ’ER
TR F OS5 0%% DD RV TRRIRDRIDDEISDEIDSEES DD D

Improving the error rate
will result in a more powerful
Quantum Computer

R

Increasing qubit number
does not improve a Quantum
Computer if error rate is high

Qubits Added: 0

Error Rate Decrease: 10x
Quantum Volume Increase: 24x

Qubits Added: 100
Error Rate Decrease: 0
Quantum Volume Increase: 0
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Quantum Volume and variants

How large and how long are the programs that
a quantum processor can run reliably today?

https://quantum-journal.org/papers/q-2020-11-15-362/
https://arxiv.org/abs/2110.03137
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FIG. 1. Quantum Application-Oriented Performance Benchmarks. The results of executing our guantum application-oriented performance
benchmarking suite on a simulator of a noisy quantum computer, with results split into benchmarks based on three loose categones of algorithm:
tutorial, subroutine, and functional. For each benchmark, circuits are run with a variety of widths, cormesponding to the problem size, here
ranging from 2 to 12 qubits. The result fidelity, a measure of the result quality, is computed for each circuit execution, and is shown as a
colored square positioned at the corresponding circuit’s width and normalized depth. Results for circuits of equal width and similar depth are
averaged together. The results of the application-oriented benchmarks are shown on top of a *volumetric background” (grey-scale squares)
which extrapolates from a device's quantum volume (here, 32) to predict the region in which a circuit’s result fidelity will be above 12 (the grey
SOuares).
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Fidelity of two pure quantum
states 1s a distance metric that
could be defined as the
overlap/transition probability:

Fp,d) =1 @1 )l°2
Can be generalized for noisy
quantum states.
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https://quantum-journal.org/papers/q-2020-11-15-362/
https://arxiv.org/abs/2110.03137
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Performance Ratio as a function of resource

Inspired in approximation ratios, considers that we are only interested in “best” samples/reads
* The probability that R random variables are all less than x is RFz(x)
The PDF for the maximum of R iid runs is

PDF = =" = R Fy ()R P(x)E(x)

L L N L N
E(y) = ) (Z p(xr)> —( > p(xr)> i
r=k

k=1 r=k+1

For a discrete distribution:

N total number of runs, r rank index of solution within L different solutions, p(x,) probability of obtaining rt" solution
and x; being the resource cost of each sample/read

Can be obtained by bootstrapping!
Generate N>>1 runs. Select randomly R<<N. Compute the max of R. Repeat and average.
Using our “rigorous notation”

fra i) = Frp(Xi) = Fry(Xiey) = [(1 = Fx(Xie-))" = (1= Fx (X))
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How to evaluate the parameter settlv\ﬂn dows Sticker

 We propose using experimental data to respond to Obtain the profile across the benchmark
guestions regardlng new Instances set for a random instance of the set

« Addressing main question of “speedup at application
scale” for your problem of interest.

— EXpectation of metric quality at a fixed resource
and confidence

« With X% confidence, will we find solution with Y quality
after using R resource?

« Bonus:
— Explainable, Simple, Automatic!

 |n our notation

v Xp(R,0) = Ft (1 - (1= o)F)

" licensed under “ " licensed under

O EREEERE <y TEPPER

»
»

Quiality Metric
On a random instance X% probability

/1 Pre/post processing
overhead

0 Resource



https://pxhere.com/en/photo/150553
https://creativecommons.org/publicdomain/zero/1.0/
https://knowyourmeme.com/memes/slaps-roof-of-car
https://creativecommons.org/publicdomain/zero/1.0/
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Let’s go to Colab

https://colab.research.google.com/github/bernalde/QuiPML22/blob/
main/notebooks/Notebook%205%20-%20Benchmarking.ipynb
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C h e C k t h e Aw S E xe rc i Se S Anatomy of quantum annealing with D-Wave on Amazon Braket

This tutorial notebook dives deep into the anatomy of quantum annealing with D-Wave on Amazon Braket.

First, the concept of guantum annealing as used by D-Wave is introduced to show how it probabilistically finds the (approximate) optimum ta some optimization problem.

The next section introduces the structures of the D-Wave QPUs and the concept of embedding. Amazon Braket provides two D-Wave devices, 2000Q and Advantage. The
I et 9 S O to th e AWS B raket 2000Q device has the Chimera topology, while the Advantage device has the Pegasus topology. Running a problem on a particular D-Wave device requires to map the

original source graph onto the targe graph. This mapping is called embedding.

Finally, an example QUBO problem is solved using both the classical annealers and QPU to demonstrate the sampling process and a breakdown of the QPU access time.

.
https://console.aws.amazon.com/braket Quantum Background: quantum annealing
- - - Introduction: On a high level, quantum annealing (QA) is a specific appreach to quantum computing, as opposed to the common gate-based model. Quantum annealers
An n eal I n tuto r I al S fro m u I Z I I I are specific-purpose machines designed to solve certain problems belonging to the class of Quadratic Unconstrained Optimization (QUBQ) problems. The QUBO model
g unifies a rich variety of NP-hard combinatorial optimization problems, such as Quadratic Assignment Problems, Capital Budgeting Problems, Task Allocation Problems and
Maximum-Cut Problems, just to name a few [1]. Since quantum annealers do not have to meet the strict engineering requirements that universal gate-based machines
have to meet, already today this technology features ~ 5000 superconducting qubits, compared to less than 100 qubits on gate-model quantum computers. Amazon

Braket offers access to the superconducting quantum annealers provided by D-Wave Systems that can be programmed using the high-level, open source tool suite called
Ocean.

q u antu m a.n n eal I n g/DWaVe An ato my . I pyn b Adiabatic quantum computing: The paradigm of QA is closely related to adiabatic quantum computing (with only subtle differences discussed later) [2]. In essence,

adiabatic quantum computing makes use of an adiabatic process where parameters are changed sufficiently slow for the system to adapt to the new parameter
configuration quasi-instantaneously. For example, in a quantum mechanical system, some Hamiltonian starts from H, and slowly changes to some other Hamiltonian ),
with (for example) a linear ramp (also called schedule):

H(r) = (1Unknown character Unknown character Unknown charactert)H + rH .

(al so found in GitHub) but if you want to execute it hcs 1 €[, 1] o st s Accnding e sytonts Sl i f £ = 1 gvrmd byl iy ctanind by g, chang b h -

dependent Hamiltonian H(l) is sufficiently slow, the resulting dynamics are very simple (according to the adiabatic theorem): if the system starts out in an eigenstate of H,
the system remains in an instantaneous eigenstale throughout the evolution. Specifically, if the system started in the ground state (the eigenstate with minimal energy), the

T ' system stays in the ground state, if the condition of adiabaticity (that is related to energy difference between the ground state and the first excited state called the gap) is
0 pe n I I n . satisfied. This means, to solve a (unknown) ground state of a Hamiltonian for a (hard-to-solve) problem, one can start from an easy-to-solve Hamiltonian with a known
ground state

Quantum Annealing: In practice, it is very difficult to fulfill the adiabaticity conditions, because of undesired noise. Therefore, quantum annealers forego the stringent,
theoretical adiabaticity conditions and heuristically repeat the annealing procedure many times, thereby collecting a number of samples from which the configuration with
the lowest energy can be selected as the optimal solution. However, there is no strict guarantee to find the true ground state.

. -
o G reat b aC kg ro u n d I n fo rl I Iatl O n O n Typically the Hamiltonian H y has the form: Ho = ", &; with wel-known ground state (the equal superposition of all bitstrings). And H, is described by the canonical lsing

model

HI\ing = E, j"'f. J”f";-

- Quantum Annealing

- Embedding

— Ising Model / MAXCUT / QUBO
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https://console.aws.amazon.com/braket
https://github.com/aws/amazon-braket-examples/blob/main/examples/quantum_annealing/Dwave_Anatomy.ipynb
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Your plot is saved to maxcut_plot.png

Other exercises on DWave /7
In AWS Braket https://console.aws.amazon.com/braket PR N : e %
there are other interesting Quantum Annealing tutorials ‘:_/ P 22 S5
.\'\ '/- ==i;"
quantum_annealing/* \\'1"/
Result to MVC problem: [1, 3, 4, 6, 8, 9]

Size of the vertex cover: 6

(also found in GitHub) but if you want to execute it
open it in AWS.

Classical combinatorial problems: MAXCUT, Graph
partitioning, Min vertex cover, Traveling Salesman

Person

Other cases: Factoring, Structural Imbalance
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Check (and run) them all
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https://console.aws.amazon.com/braket
https://github.com/aws/amazon-braket-examples/blob/main/examples/quantum_annealing

